
The CipUX XML-RPC Server and Client
Communication Across Boundaries

Christian Külker

Version 3.4.0.7

This document addresses the basic CipUX XML-RPC server and client
communication specification and its usage. The server API is explained in de-
tail and examples for accessing the server are given in Perl. Other XML-RPC
client developers should be in a position to acquire the important information
through the given examples to seamlessly develop own applications. Sections
about tools, debugging hints and existing free open source XML-RPC client
projects complete this paper.

Contents

1 Preface 2

2 Parts of CipUX XML-RPC server 2

3 Configuration of the server 3

4 Communication via session 5

5 Categories of RPC calls 7

6 Example call and answer 7
6.1 Sum call example . 7
6.2 Task call example . 9

1

7 Construction of the client call 10
7.1 RPC scope . 11
7.2 Payload . 11

8 The server response 13

9 Calls and responses in detail 15
9.1 ping . 15
9.2 version . 17
9.3 sum . 18
9.4 cipux task sum . 19
9.5 login . 19
9.6 logout . 21
9.7 ttl . 21
9.8 session . 22
9.9 task . 24

9.9.1 Taxonomy . 28
9.9.2 Object call parameter . 29
9.9.3 Value call parameter . 31
9.9.4 Other call parameters . 32
9.9.5 More then one call parameter . 33
9.9.6 Exceptions . 36
9.9.7 Access to a task . 36

10 Toolbox 38
10.1 cipux rpcd . 38
10.2 cipux rpc list . 39
10.3 cipux rcp test client . 39
10.4 cipux rpc test repetition . 40

11 CAT - other CipUX XML-RPC clients 41
11.1 CAT-Web . 42
11.2 CipuxPHP . 42
11.3 CipUX-Passwd . 43
11.4 CATweasel . 43

2

1 Preface

This document supports developers of XML-RPC clients and describes practical parts
of the XML-RPC server calls and responses in detail while other parts like installing
are skipped. Others might find to read this document useful too. In the beginning a
section shows different parts of the software package and the configuration of the main
server part. It also includes a part of how using the server in a secure way. The following
section introduce briefly the session concept and a short section thereafter draw a picture
representing the categories of XML-RPC server calls. For the impatient two example
calls and responses are displayed in a section by itself. One example is a didactically sum
call while the other is simple real life call from the task scope. The next two sections
describe the construction of the client call and server response more specific. The most
important section of this document specify all XML-RPC server scopes with their sub-
commands in detail. The focus of this paper lies on the task scope. Afterwards the
toolbox section introduce programs and hints for testing and debugging of XML-RPC
clients. The last section is a summary of already developed administration tools. Those
Free Open Source Software projects are provided there as a starting point for gathering
more practical informations. Thanks to Jean-Charles Siegel and Jochen Breuer for a
contribution in this section.

2 Parts of CipUX XML-RPC server

The CipUX-RPC-3.4.0.7.tar.gz package is a standard CPAN package. The latest package
can be downloaded from http://release.cipux.org. This overview will not explain how a
CPAN package works, but what this package provides and installs in the file system. It
contains basically two approaches (A) + (B) which might (in the future) merge into one.
(A) the CipUX XML-RPC sever and (B) security wrapper for stunnel4. Additional it
contains (C) some utility tools. You need at least (A) to have a plain CipUX XML-
RPC server. If you also install (B) you can use a secure connection over the stunnel4
wrapper. And finally if you also install and use (C) you can test some aspects of the
XML-RPC server and use cipux rpc list as a convenient method to list all XML-RPC
calls and task scope sub-commands. Scripts in (D) are provided in the source code
upstream tar release for the purpose of study. Some of those scripts are referenced,
explained or even included in this document.

3

http://release.cipux.org

(A)
/usr/share/perl5/CipUX/RPC.pm
/usr/share/perl5/CipUX/RPC/Server.pm
/usr/share/perl5/CipUX/RPC/Server/Daemon.pm
/usr/sbin/cipux_rpcd
/etc/init.d/cipux-rpcd
/usr/share/cipux/etc/cipux-rpc.ini

(B)
/etc/cipux/stunnel/readme.txt
/etc/cipux/stunnel-cert.conf
/etc/cipux/stunnel.conf
/etc/init.d/cipux-rpcdr
/usr/sbin/cipux_mkcertkey
/usr/sbin/cipux_rpcdr

(C)
/usr/bin/cipux_rpc_list
/usr/share/perl5/CipUX/RPC/Test/Client.pm
/usr/sbin/cipux_rpc_test_client
/usr/bin/cipux_rpc_test_repetition

(D)
doc/example/bin/expl_rpc_ping
doc/example/bin/expl_rpc_session
doc/example/bin/expl_rpc_task_create_destroy
doc/example/bin/expl_rpc_task_list
doc/example/bin/expl_rpc_task_member
doc/example/bin/expl_rpc_task_sum

3 Configuration of the server

The CipUX XML-RPC server is a Perl script called cipux_rpcd with its attached
modules CipUX::RPC*. The server script can be found (depending on your installa-
tion) for example under /usr/sbin/cipux_rpcd. The default server configuration is

4

for example at /usr/share/cipux/etc/cipux-rpc.ini. This default configura-
tion can be overwritten by other files. This document will not explain the configuration
space here. Just to give an idea, that it is not enough to parse a single file, over-
writing configuration can be found for example in: /etc/cipux/cipux-rpc.ini or
˜/.cipux/cipux-rpc.conf.

Valid configuration directives - which are essential to know for programming XML-RPC
clients - in this file are:

1 xml_rpc_port = 8001
2 xml_rpc_address = localhost
3 xml_rpc_proto = tcp
4 intern_admin_group = admin

Some of this default values are changeable today, some are planned to made changeable
in the future. This set of values describes the plain CipUX XML-RPC server on port
8001. It is fine to use this port in socket mode on localhost. However you should not
use this port for remote communication over network. The SSL encryption is handled
by the stunnel4 wrapper for now, but might be integrated into the default server. If you
plan to communicate over the network use the port defined in the stunnel4 configuration
for CipUX. Per default this port is 8000.

The CipUX XML-RPC server in version up to 3.4.0.7 do handle http requests but not
https requests. To make the connection secure you have to use a different software.
One possibility is to use stunnel4 which is the default solution for secure connections
to the CipUX XML-RPC server so far. There is not much to say about this soft-
ware. The Perl script cipux_rpcdr is a wrapper to stunnel4 with its start script
/etc/init.d/cipux-rpcdr and a separate configuration file stunnel.conf and
certificates. The default is to accept https requests on port 8000. For more information
please refer to the stunnel4 documentation.

5

4 Communication via session

The communication with the XML-RPC server is straight forward. The following de-
scribes a simplified session.

client

server
answer

client logout(session)

server
answer

client list(session)

server
answer(session)

client login

server
answer

client ping

6

If you run longer sessions with your clients - which is not advisable for web application
through their fragile nature (lot of timeout traps) - you should take care of the session
key. Here is an example of communication which renews the session key. The ttl call is
not mandatory and can be used to examine how long as session can live.

client

server
answer

client logout(session2)

server
answer

client something(session2)

server
answer(session2)

client session(session1)

server
answer

client something(session1)

server
answer

client ttl(session1)

server
answer(session1)

client login

server
answer

client ping

7

5 Categories of RPC calls

The above calls - like list - are of course simplified. The list call will be introduced in
detail later. To answer the question which calls are needed, one should know that they
can be categorized as follows:

Ê simple calls (mostly for testing): sum

Ë availability calls: ping

Ì authentication calls: login, logout

Í session management calls: session, ttl

Î task calls with sub-commands: call: task (sub-commands: cipux_task_*)

If you write a CipUX RPC client, you need in most situations only the calls from Ë, Ì,
Í and Î. Occationally in the development phase you might also need Ê. Especially Ê

might be a good starting point, if you are new in the RPC development.

6 Example call and answer

Before more details are presented and explained this section will just provide two exam-
ples sum and task of a client call and the server response with discrete values for the
impatient. The examples are taken from the cipux_rpc_test_client script.

6.1 Sum call example

Here is the client code for ’sum’ call with its sum command. A simple call and command
that do not need a ticket but it need two parameters:

Discrete sum call example

1 my $https_url = "https://localhost:8001/RPC2";
2 my $server = Frontier::Client->new(url => $https_url);
3 my $pay_hr = { # hash ref of payload
4 header_hr => { # header is part 1 of payload
5 cipux_version => ’3.4.0.0’,
6 client_name => ’cipux_rpc_test_client’,

8

7 client_version => ’3.4.0.0’,
8 rpc_version => ’2.0’,
9 client_key => ’dummy’,

10 client_cred => ’dummy’,
11 gmt_time => ’1195349030’,
12 },
13 # some important key-value pairs
14 login => ’dummy’,
15 ticket => ’dummy’,

16 cmd => ’sum’ ,
17 param_hr => { # second part of payload: parameter
18 ’summand2’ => ’4’,
19 ’summand1’ => ’3’,
20 },
21 };

22 my $answer_hr = $server-> call(’sum’ , $pay_hr);

And here is the value of $answer_hr which comes from the server displayed in the
Data::Dumper format:

$answer_hr = {
’header_hr’ => {

’cipux_version’ => ’3.4.0.0’,
’server_key’ => ’’,
’server_cred’ => ’’,
’gmt_time’ => ’1195349220’,
’server_version’ => ’3.4.0.0’,
’server_name’ => ’cipux_rpcd’,
’rpc_version’ => ’2.0’

},
’cmd’ => ’sum’,
’ticket’ => ’dummy’,
’login’ => ’dummy’,
’status’ => ’TRUE’,
’type’ => ’aref’
’cmdres_r’ => [’7’],

};

9

6.2 Task call example

The task call sub-command cipux_task_list_student_accounts is a real world
CipUX::Task XML-RPC example. It is is also a good example for a simple parameterless
call. One part, which is also different from the last call is, that a login and ticket is
required.

Discrete list call example

1 my $https_url = "https://localhost:8001/RPC2";
2 my $server = Frontier::Client->new(url => $https_url);
3 my $pay_hr = {
4 header_hr => {
5 cipux_version => ’3.4.0.0’,
6 client_name => ’cipux_rpc_test_client’,
7 client_version => ’3.4.0.0’,
8 rpc_version => ’2.0’,
9 client_key => ’dummy’,

10 client_cred => ’dummy’,
11 gmt_time => ’1195349030’,
12

13 },
14 login => ’cipadmin’,
15 ticket => ’48df73accd8530af69f97cf1c847f29e’,

16 cmd => ’cipux_task_list_student_accounts’ ,

17 param_hr => { },
18 };

19 my $answer_hr = $server->call(’task’ , $pay_hr);

Of course this was a static $pay_hr call. And the ticket is not valid any more. Therefore
this example shows what data is transfered or programed not how it should be transfered.
Hard coded tickets are not at all a solution.

And here is the value of $answer hr again in Data::Dumper format:

$answer_hr = {
’msg’ => ’’,
’problem’ => ’0’,
’ltarget’ => ’memberUid’,
’cmd’ => ’cipux_task_list_student_accounts’,
’cmdres_r’ => {

10

’students’ => {
’cn’ => [

’students’
],

’memberUid’ => [
’bilbo’,
’frodo’,
’mytest’,

]
}

},
’status’ => ’TRUE’,
’header_hr’ => {

’server_cred’ => ’’,
’server_key’ => ’’,
’cipux_version’ => ’3.4.0.0’,
’gmt_time’ => ’1260715448’,
’server_version’ => ’3.4.0.0’,
’rpc_version’ => ’2.0’,
’server_name’ => ’cipux_rpcd’

},
’type’ => ’HASH’,
’ticket’ => ’dc43ee1170d9514ad7f762f561b4382b’,
’login’ => ’cipadmin’

};

7 Construction of the client call

In general a XML-RPC call can be made by a simple evocation:

my $answer_hr = $server->call(’RPC scope’,$pay_hr);

This line is made from different parts. I. The $answer_hr which contains the server
response explained in section 8 on page 13. II. The $server is a Perl object. See
the example client in section 9.1 on page 16 how to get that. III. The Frontier::Client
key word call, which is a subroutine in Frontier::Client. You probably do not need to
look that up. IV. The last part represents the parameters to call. Every call contains
two parameters first the ’RPC scope’ name (ping, login, task, ...) and second a hash

11

reference $pay_hr to the payload.

7.1 RPC scope

The RPC scope is the name of the subroutine (sub) of CipUX::RPC Perl module. The
following table shows different RPC scopes and their constrains.

RPC scope require login ticket check ticket renew

ping no no no
version no no no
sum no no no
login yes yes no
logout yes yes no
session yes yes yes
ttl yes yes no
task yes (*) yes (*) no

(*) Only for the task cipux_task_sum the value is ”no”.

7.2 Payload

The payload can be assigned through a reference to a hash. This reference are con-
structed out of 5 mandatory parts (2-6):

General payload hash

1 $pay_hr = {

2 header_hr => $HEADER_HR,
3 login => $login,
4 ticket => $ticket,
5 cmd => ’sub-command name’,
6 param_hr => $param_hr,
7 };

header hr The key header_hr demands a reference to a hash as its value: the so
called ”header”. The header as of protocol version 2.0 remains static dur-

12

ing the communication, the count of keys are fixed. The values are also
more or less fixed. The gmt_time value received from the server however
can change. The server uses only the client_name. Therefore the client
should provide and use a registered name. A not registered client might be
rejected. Since there is no prove of validity of a client name, the server do
not trust a client just because it is registered. Therefore rejecting or not
rejecting a registered client is not a matter of security it is just a matter
of convenience for the client developer. This behavior might change in the
future, but it is foreseen that this has to go along with using other (not jet
used) header fields, like client_key and client_cred.

Since the header remains basically the same, this document will not print
the header over and over again. It will use the following header taken from
cipux_rpc_test_client whenever the hash reference $HEADER_HR oc-
cur.

General header hash

1 $HEADER_HR = {
2 cipux_version => ’3.4.0.0’,
3 client_name => ’/usr/bin/cipux_rpc_test_client’,
4 client_version => ’3.4.0.0’, # can be choosen
5 rpc_version => ’2.0’,
6 client_key => $dummy, # $dummy not used
7 client_cred => $dummy,
8 gmt_time => $epoche,
9 };

login is the user id (uid) of the logged in user. You may not use an empty string.
Also keep in mind that this do not refer to numerical user id (uidNumber).

ticket is the valid session ticked of the logged-in user. You may not use an empty
string, But some calls need a sting. So if the call do not need a ticket
“dummy” or “test” is a good choice.

cmd name of the sub-command. Some RPC scopes do have only one command.
Like the RPC scope “ping” which will have the cmd “ping”. Other RPC
scopes like “task” to have several hundreds of cmds. You may not use an
empty string here.

param hr is a reference to a hash. It can be a empty reference to a hash but not a
reference to an array. The expected content depends on the cmd value. And
this is related to the call subroutine of CipUX::RPC and secondly to the

13

task subroutine of CipUX::Task. Later parts of this document will provide
more hints on how to determine which parameter keys are possible.

8 The server response

This section describes what will be send back from the server and how to interpret this.
The client might have implemented this call to the server.

my $answer_hr = $server->call(’RPC scope’,$pay_hr);

In Perl the answer $answer_hr of the server is a reference to a hash and is made out
of seven parts.

$answer_hr = {
header_hr => $server_header_hr, # 1
login => $login, # 2
ticket => $ticket, # 3
cmd => ’sub-command name’, # 4
status => ’TRUE|FALSE’, # 5
type => ’href|aref|string’, # 6
cmdres_r => $cmdres_r, # 7

};

header hr is a key in the payload. The value of this key is a hash reference to a
“header”, which (again) remains more or less the same during a session.

$server_header_hr = {
cipux_version => ’3.4.0.0’,
server_name => ’cipux_rpcd’, # server name
server_version => ’3.4.0.0’, # not fixed
rpc_version => ’2.0’,
server_key => $dummy, # reserved
server_cred => $dummy, # reserved
gmt_time => time(), # server time

};

See the following subsection for details about the header keys. This
answer-header is basically the same as the header which is used in the

14

client call in section 7.2.

cipux version is a key with a scalar value. The CipUX version
is given from the server. However only the first 3
digits are significant. The forth digit will probably
not change.

server name contains a scalar value with the name of the server.
Its value is constant and as long nobody else develops
a different server it will cipux_rpcd.

server version has a scalar value of the server version. All four dig-
its of this response are significant. The server will
increase this version, if the server was updated and
restarted.

rpc version represents a scalar value of the CipUX XML-RPC
protocol version. This is the version number of the
RPC calls. The number is unlikely to be changed
within CipUX 3.4.0.y but might change if needed
in CipUX 3.4.x.y. Your client should only accept
connections up to a discrete version number.

server key Not used now.

server cred Not used now.

gmt time The time is set by the server.

login is the uid of the logged in user

ticket is the more or less valid ticked of the logged in user, which was used by
the user request. This filed will never provide a new or renewed ticket.
you have to use the session call for this. See section 9.8 on page 22.

cmd name of the sub-command

status is key with a boolean scalar value. The status can be TRUE or FALSE.

type returned data type: href, aref, string

cmdres r is key which name derived from command (cmd) result (res) reference
(_r). The value is a reference to an array or hash which is constructed
like this

$cmdres_r = [’a’,’b’,’c’]

or

$cmdres_r = { ttl=> 20 }

15

ltarget is a key which can be used to automatically parse the output of the
cmdres_r key value. The value of ltarget can be a LDAP attribute
like uidNumber if the target of the task scope sub-command is only one
attribute. This feature is considered to be experimental.

At the moment some calls return other undocumented fields and there might be more
fields added in the future. The fields which are documented here are considered to be
a part of the version 2.0 of the protocol. You should use them. You could also use the
undocumented fields. However they might vanish or change with out warning. If you are
missing some fields or if you want that a field will be officially, you can join cipux-devel
and make a existing field stable or develop a new field, which can be introduced in the
next protocol version 2.2.

9 Calls and responses in detail

The CipUX::RPC call “ping” and CipUX::RPC “sum” can be used to test the RPC
server without authentication.

9.1 ping

call: ping
cmd: ping
login parameter: no
ticket parameter: no
param hr: empty
cmdres r type: hash reference
cmdres r value: empty

The aim of this function is to see if the server is up. The return value will always be
the status “TRUE”. No value in $cmdres_r. So if you are getting a status other then
“TRUE” the server is up but has a problem. If you get no answer the server is not up.
Sorry due to the nature of logic it was not possible to implement an answer of “DOWN”
from the server if the server is down.

16

$status => ’TRUE’,
$cmdres_r = { }

This short program tests if the local server is up and running or not. However it does
not tell you if the stunnel4 wrapper is working or not.

expl rpc ping

1 #!/usr/bin/perl -w
2 use strict;
3 use English qw(-no_match_vars);
4 use Frontier::Client;
5

6 my $header_hr = {
7 cipux_version => ’3.4.0.0’,
8 client_name => ’expl_rpc_ping’,
9 client_version => ’0.1’,

10 rpc_version => ’2.0’,
11 client_key => ’’,
12 client_cred => ’’,
13 gmt_time => time,
14 };
15

16 my $pay_hr = {
17 header_hr => $header_hr,
18 login => ’dummy’,
19 ticket => ’dummy’,
20 cmd => ’ping’,
21 param_hr => {},
22 };
23

24 my $http_url = "http://localhost:8001/RPC2";
25 my $server = Frontier::Client->new(url => $http_url);
26 my $answer_hr = {};
27 eval { $answer_hr = $server->call(’ping’, $pay_hr); };
28

29 if ($EVAL_ERROR) {
30 print "Server down\n";
31 }
32 elsif ($answer_hr->{status} eq ’TRUE’) {

17

33 print "Sever up\n";
34 }
35 else {
36 print "Server problem\n";
37 }

Example Answer:

$answer_hr = {
’msg’ => ’’,
’ltarget’ => ’NULL’,
’cmd’ => ’ping’,
’cmdres_r’ => {},
’status’ => ’TRUE’,
’header_hr’ => {

’server_cred’ => ’’,
’server_key’ => ’’,
’cipux_version’ => ’3.4.0.0’,
’gmt_time’ => ’1260436207’,
’server_version’ => ’3.4.0.0’,
’rpc_version’ => ’2.0’,
’server_name’ => ’cipux_rpcd’

},
’type’ => ’href’,
’ticket’ => ’dummy’,
’login’ => ’dummy’

}

9.2 version

call: version
cmd: version
login parameter: no
ticket parameter: no
param hr: empty
cmdres r type: hashref
cmdres r value: cipux version, server version, rpc version

18

The aim of the call is to test the version of the CipUX::RPC server (without logging
in) to be able do decide if a login might be possible or not. An other thing is that you
can test with this function, if you are able to parse the returned hash reference. The
relevant part of the answer looks as follows.

’cmdres_r’ => {
’cipux_version’ => ’3.4.0.0’,
’server_version’ => ’3.4.0.0’,
’rpc_version’ => ’2.0’

},

9.3 sum

call: sum
cmd: sum
login parameter: no
ticket parameter: no
param hr: summand1, summand2
cmdres r type: array reference
cmdres r value: a scalar value

The CipUX::RPC server provides two sum function: The first is CipUX::RPC sum and
the second is and CipUX::Task cipux_task_sum. This section is about the simple
CipUX::RPC sum function. The aim of this function is to test, if you can send arguments
via hash reference and if you can parse the returned array reference.

1 param_hr => {
2 summand1 => 3,
3 summand2 => 4,
4 },

The call will return an array reference with a scalar value. See section 6.1 on page 7 for
a full example.

’cmdres_r’ => [

19

’7’
],

9.4 cipux task sum

call: task
cmd: cipux task sum
login parameter: no
ticket parameter: no
param hr: summand1, summand2
cmdres r type: array reference
cmdres r value: a scalar value

The cipux_task_sum is similar to the sum call. Except that it is internally invoked
in the task section of the XML-RPC server. You have already noticed the difference
between the cmd and call section above. Therefore rather then testing your client this
call can be used to test the rpc server. It is summarized here for the sake of completeness.

The call will return an array reference with a scalar value. See section 6.1 on page 7 for
a similar example with the ’sum’ call with its sum sub command.

9.5 login

call: login
cmd: login
login parameter: yes
ticket parameter: no
param hr: password
cmdres r type: hash reference
cmdres r value: ttl, login, ticket

The login call request 2 parameters. One parameter is given as payload and one param-
eter will be supplied inside param_hr.

20

login call payload

1 $pay_hr = {

2 param_hr => { password => ’**********’ },

3 cmd => ’login’,
4 header_hr => {
5 cipux_version => ’3.4.0.0’,
6 client_key => ’’,
7 client_cred => ’’,
8 gmt_time => ’1196466596’,
9 client_name => ’cipux_rpc_test_client’,

10 client_version => ’3.4.0.0’,
11 rpc_version => ’2.0’
12 },
13 ticket => ’dummy’,

14 login => ’cipadmin’

15 };

An positive answer should contain:

$answer_hr = {
’msg’ => ’’,
’cmd’ => ’login’,
’cmdres_r’ => {

’ttl’ => ’20’,
’ticket’ => ’1559cc7c463af4a5a28586e931fbf744’,
’login’ => ’cipadmin’

},
’status’ => ’TRUE’,
’header_hr’ => {

’cipux_version’ => ’3.4.0.0’,
’server_key’ => ’’,
’server_cred’ => ’’,
’gmt_time’ => ’1196466106’,
’server_version’ => ’3.4.0.0’,
’server_name’ => ’cipux_rpcd’,
’rpc_version’ => ’2.0’

},
’type’ => ’href’,
’ticket’ => ’dummy’,
’login’ => ’cipadmin’

};

21

Be aware that you have to grab the cmdres_r ticket not the payload ticket! The example
script expl_rpc_session contains a login call.

9.6 logout

call: logout
cmd: logout
login parameter: yes
ticket parameter: yes
param hr: empty
cmdres r type: hash reference
cmdres r value: empty

There is nothing much to tell about the logout call. If it is successfully issued it
returns “TRUE” as its status back. The example script expl_rpc_session contains
a logout call.

’status’ => ’TRUE’,

9.7 ttl

call: ttl
cmd: ttl
login parameter: yes
ticket parameter: yes
param hr: empty
cmdres r type: hash reference
cmdres r value: ttl

The relevant part of the answer:

’cmdres_r’ => {’ttl’ => ’20’},

22

See section 9.9.7 on page 37 for an example.

9.8 session

call: session
cmd: session
login parameter: yes
ticket parameter: yes
param hr: empty
cmdres r type: hash reference
cmdres r value: ticket or empty

The session call can be used in two ways with the same syntax. First it can be used
to check if the session was still valid. Second the call gives you a new ticket in the
cmdres_r, so you can use the call to extent the session. The best is to uses both ways
together. If the session is not valid, you should examine the msg payload field for more
information. In that case cmdres_r is empty.

$answer_hr = \{
’msg’ => ’The ticket check was not successful.

This could have several reasons: a timeout, logout,
... Please log in again. is_ticket_bad: (ticket is
bad: time login mismatch)’,
’cmd’ => ’session’,
’cmdres_r’ => {},
’status’ => ’FALSE’,
’header_hr’ => {

’cipux_version’ => ’3.4.0.0’,
’server_key’ => ’’,
’server_cred’ => ’’,
’gmt_time’ => ’1196466106’,
’server_version’ => ’3.4.0.0’,
’server_name’ => ’cipux_rpcd’,
’rpc_version’ => ’2.0’

},
’type’ => ’href’,
’ticket’ => ’1559cc7c463af4a5a28586e931fbf744’,
’login’ => ’cipadmin’

};

23

If the session is still a valid session a new ticket will be given via the cmdres_r reference.
In this case a hash reference with the key ticket.

’cmdres_r’ => {
ticket => ’285c9699e3f664fbfce5d04e6d0b98e0’

},

You can grab this for example with this lines of Perl code.

1 my $new_ticket = undef;
2 if (exists $answer_hr->{cmdres_r}->{ticket}
3 and defined $answer_hr->{cmdres_r}->{ticket}
4 and $answer_hr->{cmdres_r}->{ticket})
5 {
6 $new_ticket = $answer_hr->{cmdres_r}->{ticket};
7 }

The old session ticket, which you send to the server will also given back via the ticket
key in the payload of the answer. To make the distinction clear you could grab this with
this lines of Perl code.

1 my $old_ticket = undef;
2 if (exists $answer_hr->{ticket}
3 and defined $answer_hr->{ticket}
4 and $answer_hr->{ticket})
5 {
6 $old_ticket = $answer_hr->{ticket};
7 }

Sometimes things get wrong. One real user scenario might be that the user waited too
long and the session expired or might get wrong because of other reasons. In this case
the answer from the server would look like this. Non important keys where omitted.

’msg’ => ’Your ticket is not valid! This can have serveral reasons: (1) the\
ticket expired. (2) an error in programming (3) you never logged in’,
’cmdres_r’ => {},
’status’ => ’FALSE’,
’ticket’ => ’test’,

24

’login’ => ’test’

So you can expect to get a status of FALSE and an empty cmdres_r. The msg field
might give a hint what is wrong. For now it refers to 3 problems. This might changed
in the future to be more precise. This message might also be translated into other
languages. For an example see the script expl_rpc_session, it contains a session
call.

9.9 task

call: task
cmd: name of CipUX::Task command
login parameter: yes
ticket parameter: yes
param hr: depends
cmdres r type: hash reference
cmdres r value: depends

The RPC scope “task” is the most used part of the CipUX XML-RPC server calls. Be-
cause the task scope has a lot of sub-commands we will start with a simple example. We
assume that you have some users in the role “student” or “students” on your system. To
list those you have to use the sub-command cipux_task_list_student_accounts.
Just to show you the expected output you can use the CipUX::Task layer directly as
root.

˜$ cipux_task_client -t cipux_task_list_student_accounts

If you have students on you system you might get a similar output like this:

students bilbo frodo mytest

Here “students” is the role and the members of this role are: “bilbo”, “frodo” and
“mytest”. Section 6.2 on page 9 contains a full example what parameter are used and
what the expected output looks like if you code this by hand.

25

If you re-program this call by hand it can get longly homework. Programming ping, login,
task and then logout will take a long time. To make this shorter in Perl you can use the
helper module CipUX::RPC::Client. If you use an other language then Perl have a
look at the source code and comments of the sub extract_data_for_tpl { ... }

subroutine of CipUX::RPC::Client. This was originally written for CAT to give it
a helper routine to parse the output of an XML-RPC answer. However you probably
should implement a similar or even better routine in your application. Here comes a full
fledged CipUX::RPC::Client example with the XML-RPC scopes ping, login, task
(cipux_task_list_student_accounts) and of course logout.

expl rpc task list

1 #!/usr/bin/perl -w
2 use strict;
3 use CipUX::RPC::Client;
4 use English qw(-no_match_vars);
5

6 # prep
7 my $rpc = CipUX::RPC::Client->new(
8 {
9 url => ’http://localhost:8001/RPC2’,

10 client => ’expl_rpc_task_list’,
11 version => ’0.0.1’,
12 }
13);
14

15 # start calling
16 eval { $rpc->rpc_ping; };
17 die "Server is down! $EVAL_ERROR" if $EVAL_ERROR;
18 my $ok = $rpc->rpc_login;
19 if ($ok) {
20 my $cmd = ’cipux_task_list_student_accounts’;
21 my $a_hr = $rpc->xmlrpc({ cmd => $cmd });
22 my $d_hr = $rpc->extract_data_for_tpl(
23 { answer_hr => $a_hr, use_ltarget => 1 });
24 print "Students on the system:\n";
25 foreach (@{ $d_hr->{tpl_data_ar} }) {
26 print "\t$_->{$d_hr->{ltarget}}\n";
27 }
28 $rpc->rpc_logout;
29 }

26

30 else {
31 print ’No access for ’ . $rpc->get_login . "!\n";
32 print "Wrong password?\n";
33 }

If you use this sample program you will get output like this.

expl_rpc_task_list$ Enter login: cipadmin
expl_rpc_task_list$ Enter password:
Students on the system:

bilbo
frodo
mytest

One short word on the server response. The server response depends on the sub command
and the data structure which come from the storage layer. This is the data which the
cipux_task_list_student_accounts sub-command returns. The most relevant
parts of this answer are ’ltarget’ and ’cmdres_r’

$answer_hr = {
’msg’ => ’’,
’ltarget’ => ’memberUid’,
’cmdres_r’ => {

’students’ => {
’cn’ => [

’students’
],

’memberUid’ => [
’bilbo’,
’frodo’,
’mytest’,

]
}

},
’cmd’ => ’cipux_task_list_student_accounts’,
’status’ => ’TRUE’,
’login’ => ’cipadmin’,
’problem’ => 0,
’header_hr’ => {

’cipux_version’ => ’3.4.0.0’,
’server_key’ => ’’,

27

’server_cred’ => ’’,
’gmt_time’ => 1260715448,
’server_version’ => ’3.4.0.0’,
’server_name’ => ’cipux_rpcd’,
’rpc_version’ => ’2.0’

},
’type’ => ’HASH’,
’ticket’ => ’240bf8a03ed86a8f5b762f9cccdce73f’

};

The expression

1 my $d_hr = $rpc->extract_data_for_tpl({ answer_hr => $a_hr });

would convert this to the following quite similar output.

$d_hr ={
’tpl_data_ar’ => [

{
’cn’ => ’students’,
’memberUid’ => ’bilbo, frodo, mytest’

}
]

};

You can use this directly. And the key ltarget with its value ’memberUid’ will be
provided by the server response. The trick the former mentioned subroutine does is
parse every output and transform this to a unified format. The additionally parameter
use_ltarget

1 my $d_hr = $rpc->extract_data_for_tpl({
2 answer_hr => $a_hr,
3 use_ltarget => 1,
4 });

will produce a very different data structure.

$d_hr = {
’ltarget’ => ’memberUid’,

28

’tpl_data_ar’ => [
{

’memberUid’ => ’bilbo’
},
{

’memberUid’ => ’frodo’
},
{

’memberUid’ => ’mytest’
},

]
};

This look somewhat bigger, but is automatically processable.

9.9.1 Taxonomy

This section deals with logic behind task scope sub-command names. You can derive
the mandatory parameter(s) from this logic.

sub-command schematic param hr return scope

∗ add (M) to (G) object=(G), value=(M)
∗ change (X) (L) object=(X), value=(L)
∗ create (X) object=(X) [1]
∗ deregister (X) object=(X)
∗ destroy (X) object=(X)
∗ disable (X) object=(X)
∗ enable (X) object=(X)
∗ list (A)s all objects
∗ list (M) of (G) object=(X) all (M)
∗ obtain (X) (L) object=(X) one attribute
∗ register (A) object=(X)
∗ remove (M) from (G) object=(G), value=(M)
∗ retrieve all (A) (L1) .. (Ln) object=(X) all attributes
∗ search all (L) all attributes
∗ sum [2] one sum

*: cipux_task

29

[1]: require sometimes some other parameter depending on the object
require no additional parameter for *_account or *_share

[2]: only for testing
(A): object is coded in task name
(G): group object, line *_account or *_share
(L): LDAP attribute codes as English name (memberUid -> member)
(M): member, client
(Y): member, client (variable)
(X): ID, which is a variable ID to the object name (variable)

9.9.2 Object call parameter

The ’object’ parameter is an abstract $param_hr hash key to define the name of the
thing the sub-command is operating on. As you learn in the RPC task scope sub-
command taxonomy, not every sub-command do need an object, but some do. If the
sub-command needs an object it can be provided like this:

Object parameter

1 my $param_hr = {

2 object => $some_object_scalar,

3 };

The example script expl_rpc_task_create_destroy plays with this object pa-
rameter. It creates a student account and delete it thereafter.

expl rpc task create destroy

1 #!/usr/bin/perl -w
2 use strict;
3 use CipUX::RPC::Client;
4 use English qw(-no_match_vars);
5

6 # prep
7 my $rpc = CipUX::RPC::Client->new(
8 {
9 url => ’http://localhost:8001/RPC2’,

10 client => ’cipux_rpc_task_create_destroy_test’,
11 version => ’0.0.1’,
12 }
13);
14 my $s = {}; my $id = shift;

30

15

16 # start calling
17 eval { $rpc->rpc_ping; };
18 die "Server is down! $EVAL_ERROR" if $EVAL_ERROR;
19 my $ok = $rpc->rpc_login;
20 if ($ok) {
21 list_students();
22 create_student($id) if not exists $s->{"\t$id"};
23 list_students();
24 destroy_student($id) if exists $s->{"\t$id"};
25 list_students();
26 $rpc->rpc_logout;
27 }
28 else {
29 print ’No access for ’ . $rpc->get_login . "!\n";
30 print "Wrong password?\n";
31 }
32

33 sub list_students {
34 my $cmd = ’cipux_task_list_student_accounts’;
35 my $a_hr = $rpc->xmlrpc({ cmd => $cmd });
36 my $d_hr = $rpc->extract_data_for_tpl(
37 { answer_hr => $a_hr, use_ltarget => 1 });
38 $s = {};
39 foreach (@{ $d_hr->{tpl_data_ar} }) {
40 $s->{"\t".$_->{$d_hr->{ltarget}}}=1;
41 }
42 print "Students on the system:",sort keys %{$s},"\n";
43 }
44

45 sub create_student {
46 my $s = shift;
47 my $cmd = ’cipux_task_create_student_account’;
48 my $p_hr = { object => $s, };
49 my $a_hr = $rpc->xmlrpc({cmd=>$cmd, param_hr=>$p_hr});
50 }
51

52 sub destroy_student {
53 my $s = shift;
54 my $cmd = ’cipux_task_destroy_student_account’;

31

55 my $p_hr = { object => $s, };
56 my $a_hr = $rpc->xmlrpc({cmd=>$cmd, param_hr=>$p_hr});
57 }

The script requires a parameter, the name of the account which should be created. In
this case mytestobj1 was provided as an object.

˜$ perl expl_rpc_task_create_destroy mytestobj1
expl_rpc_create_destroy$ Enter login: cipadmin
expl_rpc_create_destroy$ Enter password:
Students on the system: bilbo frodo mytest
Students on the system: bilbo frodo mytest mytestobj1
Students on the system: bilbo frodo mytest

9.9.3 Value call parameter

The ’value’ parameter is an abstract $param_hr hash key to define the data for a given
’object’. Like --object frbeutlin or -o frbeutlin and -x value=Frodo
giving on the command line the value of -x are most likely referring to the first name of
the account frbeutlin. In this terms the meaning of the abstract value is determined
by the sub-command name. As you learned in the RPC scope task taxonomy about
sub-commands, not every sub command do need a value, but some do. If the sub-
command needs a value it can be provided like this on the command line:

˜$ cipux_task_client -t cipux_task_add_member_to_role_account \
-o tutor \
-x value=frbeutlin

Keep in mind that the role tutor might be different on your system. The same sub-
command looks with its parameters in code like:

Abstract value parameter hash

1 ’param_hr’ => {
2 ’object’ => ’tutor’

3 ’value’ => ’frbeutlin’,
4 },

32

9.9.4 Other call parameters

In most cases there are performed additional calculations on the abstract object and
value parameters. Therefore it is the best practice to provide those parameters as
abstract hash key. This was introduced in section 9.9.2 and 9.9.3 at page 29 and 31.

It is of course possible to provide other parameters too, not just object and value.

Create call with other parameters

1 my $pay_hr = {
2 header_hr => $header_hr,
3 login => $login,
4 ticket => $ticket,
5 cmd => ’cipux_task_create_student’,
6 param_hr => {
7 object => ’bibeutin’,

8 cipuxFirstname => ’Bilbo’, # cipux.schema

9 cipuxLastname => ’Beutlin’, # cipux.schema

10 userPassword => $new_password, # core.schema

11 homeDirectory => ’/home/cipux0/bibeutlin’, # nis.schema

12 },
13 };

However, this example would work only on systems where those LDAP attributes are
defined. In this example cipuxFirstname and cipuxLastname is defined in the
cipux.schema. If you use those LDAP attributes directly you make your application
dependent on the existence and usage of those schemata. If possible try to avoid the
direct use of LDAP attributes. Unfortunately CipUX is not providing more abstract
attributes. It would be a nice feature to have a dispatch list for this in some future version
to avoid using LDAP attributes directly. Foreseen attributes might be firstname,
lastname, mailaddress, ... But there is limited solution for this problems in the
current version, which will be introduced now.

The above problem could be avoided if you call 4 task scope sub-commands which gives
you the desired level of abstraction:

À cipux_task_create_student_account

Á change_user_account_firstname

33

Â change_user_account_lastname

Ã change_student_account_password

If you use this sub-commands you could avoid using discrete LDAP attributes. On other
thing is that you should choose the smallest object scope as possible. So choosing the
next list of commands is a little bit better, because your client would need less access
rights to do it.

À cipux_task_create_student_account

Á change_student_account_firstname

Â change_student_account_lastname

Ã change_student_account_password

If some sub-commands are missing in in you installation or in CipUX, this sub-
commands can be added to the configuration file /etc/cipux/cipux-task.perl
or /usr/share/cipux/etc/cipux-task.perl1 locally or better you write just
your additional sub-commands in a newly created file with the ending .perl under
/usr/share/cipux/etc/cipux-task.d/your_name.perl. This will be addi-
tionally read in by the CipUX configuration space. The best way is of course to share
your new sub-commands on the mailing list cipux-devel. This will give you feedback.
You might get hints on improvement or your commands will even be be included in the
next CipUX-Task release.

9.9.5 More then one call parameter

It is possible to add other attributes to a call. However this version of CipUX do not
track the possibility if such an attribute can be used or not. The LDAP server in the
last instance will decide what is possible and what not. To get an idea what is possible
it is a good idea to look at all cipux-task.perl configuration files. But also additional
attributes are possible. It is planned that an introspective command of the RPC will be
written to support a query, for each object, to see what is possible. For now the LDAP
schemata are the reference.

1You can find example sub-commands in this file. You can add something or modify this. However
this is the location of the CipUX::Task boostrap configuration and will be overwritten when you
install a new version.

34

Using the cipux_task_client is also a quick method to find out what is possible
when you add the --debug switch on the command line.

˜$ cipux_task_client -t cipux_task_create_teacher_account -o boromir \
-x cipuxFirstnanme=Boromir -x cipuxLastname=’Son of Denethor II.’\
--debug

This is equivalent to the following $param_hr perl code.

1 \$param_hr = {
2 object = ’boromir’,
3 cipuxFirstname = ’Boromir’,
4 cipusLastname = ’Son of Denethor II.’,
5 };

It is not possible to show the hole output here, but you will get an idea, what additional
LDAP attributes are possible for the $param_hr keys if you read the output. This and
the next outputs are slightly modified to fit on the page.

...
CipUX::Storage::add_node <461>: -> found obj.Class: objectClass
CipUX::Storage::add_node <470>: -> found obj.Class name: posixAccount
CipUX::Storage::add_node <486>: --> mandatory attr: uid
CipUX::Storage::add_node <486>: --> mandatory attr: gidNumber
CipUX::Storage::add_node <486>: --> mandatory attr: homeDirectory
CipUX::Storage::add_node <486>: --> mandatory attr: uidNumber
CipUX::Storage::add_node <486>: --> mandatory attr: cn
CipUX::Storage::add_node <499>: --> auxiliary attr: description
CipUX::Storage::add_node <499>: --> auxiliary attr: gecos
CipUX::Storage::add_node <499>: --> auxiliary attr: loginShell
CipUX::Storage::add_node <499>: --> auxiliary attr: userPassword
...

This section for example logs the output of the subroutine add_node. It tells in details
which attributes are mandatory or optional. Keep in mind that cipux_task_client
will throw an exception when a mandatory option is missing. This options are mandatory
in terms of LDAP and sometimes not mandatory for the client to provide. So you can
imagine that CipUX tries hard to automatically calculate many mandatory and auxiliary
values. Some of them can be overwritten on the fly. A better approach might be to

35

overwrite them in a second call or they should be changed globally in a configuration
file if you intend to always overwrite them. This is because a automatically calculated
value might be used as an input to a second automatically calculated value. So you have
to try or to understand what you do and what effect do this have. If unsure changing
later is the better approach.

2009-12-17+23:36:24 CipUX::Storage::add_node <407>: BEGIN
2009-12-17+23:36:24 CipUX::Storage::add_node <408>: > obj: boromir
2009-12-17+23:36:24 CipUX::Storage::add_node <409>: > type: cipux_account.user
2009-12-17+23:36:24 CipUX::Storage::add_node <410>: > attr_hr: $VAR1 = {

’cipuxHardQuota’ => 200000,
’cipuxIsAccount’ => ’TRUE’,
’cipuxInternetStatus’ => ’accept’,
’cn’ => [’Boromir Son of Denethor II.’],
’cipuxLastname’ => [’Son of Denethor II.’],
’uidNumber’ => [10157],
’cipuxRemark’ => ’CipUX task layer’,
’cipuxSkeletonUid’ => [’none’],
’cipuxMail’ => [’boromir@tjener’],
’cipuxStatus’ => ’idle’,
’cipuxRole’ => ’teachers’,
’gecos’ => [’boromir’],
’userPassword’ => [’{crypt}GyDkuuhqJi/rU’],
’cipuxSoftQuota’ => 100000,
’uid’ => [’boromir’],
’homeDirectory’ => [’/skole/tjener/home0/boromir’],
’objectClass’ => [’posixAccount’,

’top’,
’shadowAccount’,
’imapUser’,
’cipuxAccount’],

’gidNumber’ => [10157],
’cipuxFirstname’ => ’Boromir’,
’cipuxCreationDate’ => [’2009-12-17T23:36:23’],
’mailMessageStore’ => [’/var/lib/maildirs/boromir’],
’loginShell’ => ’/bin/bash’

};

If you read further in the debug output you can find hole hash trees for LDAP object
like this one. But be aware of just copying those structures to your XML-RPC client,
because this is only on small part of what happens if a user account is created.

36

9.9.6 Exceptions

If you create a user account (eg. “frbeutlin”) and try to create this twice which is of
course not possible you will most likely get an exception similar like this one.

(EXCEPTION) Can not add entry \
[cn=frbeutlin,ou=Group,dc=skole,dc=skolelinux,dc=no]! \
(Already exists)

This exception are triggered from the object layer and are given back to the client over
the XML-RPC server. You have to catch those exceptions.

9.9.7 Access to a task

Every task hast its own access check when requested via RPC. If we for example code
this ’ttl’ call:

Call ttl as a task

1 my $pay_hr = {
2 header_hr => $header_hr,
3 login => ’cipadmin’,
4 ticket => $some_valid_ticket,

5 cmd => ’ttl’ ,
6 param_hr => {},
7 };

8 my $answer_hr = $server->call(’task’ , $pay_hr);

Then we will be astonished because cipadmin has no right to execute the task ’ttl’

and the answer will be harsh.

$answer_hr = {
’msg’ => ’No access for [cipadmin] to [ttl]’,
’ltarget’ => ’NULL’,
’cmd’ => ’ttl’,
’cmdres_r’ => {},
’status’ => ’FALSE’,
’header_hr’ => $sever_header_hr,
’type’ => ’href’,

37

’ticket’ => ’c73ce0812fd68a2345254634dab64e24’,
’login’ => ’cipadmin’

};

We learn earlier that the ’ttl’ command can be accessed by everyone. Why can the
access then be denied? Well, a common mistake is to think that ’ttl’ is a CipUX task
(to be correctly a task scope sub command). It is not! The “ttl” is a RPC scope by
itself. The call which generates this “access denied” called the “task” scope with the
cmd ’ttl’. Instead we should call the ’ttl’ command with the right scope ttl.

Call ttl as a ttl

1 my $pay_hr = {
2 header_hr => $header_hr,
3 login => ’cipadmin’,
4 ticket => $some_valid_ticket,

5 cmd => ’ttl’ ,
6 param_hr => {},
7 };

8 my $answer_hr = $server->call(’ttl’ , $pay_hr);

This will give us the correct answer from the server.

$answer_hr = {
’msg’ => ’’,
’problem’ => ’0’,
’ltarget’ => ’NULL’,
’cmd’ => ’ttl’,
’cmdres_r’ => {

’ttl’ => ’1200’
},

’status’ => ’TRUE’,
’header_hr’ => $HEADER_HR,
’type’ => ’href’,
’ticket’ => ’1223457de8afce5c0bcae9092833d082’,
’login’ => ’cipadmin’

};

This was an example of calling an unknown sub-command like ’ttl’ in the RPC scope
task and getting an “access denied” as an answer. If you are calling a real task
sub-command (for example ’cipux_task_list_student_accounts’) you have the

38

chance that the user has access to this. Because cipadmin is in the admin group he
should have access to all task sub-commands. For other users this depends on the
role based access control (RBAC) module which can not be explained here in detail.
Basically you can assume that if the RPC client is registered and has registered its
task sub-commands and a group is assigned to that client and a user is assigned to
that group the user has access to that tasks.

10 Toolbox

This section describes some programs coming with the XML-RPC server which might
be useful for testing and debugging.

10.1 cipux rpcd

The most important tool is the server by itself. Normally started you might get some
information as log messages through you system log facility. However this is limited.
To get more information the sever has a debug mode. Of course you have to stop the
running server for this.

˜$ /usr/sbin/cipux_rpcd --debug

This will print a lot of messages on the console! Of course this is not a good way
to operate that server in production mode - it slows everything down, but it helps
developing a XML-RPC client or to see if something is wrong. CipUX uses an advanced
logging facility Log::Log4perl. This was developed for Java and adopted for Perl. More
information can be found at CPAN. You can find the configuration in log4perl.conf. Be
aware that CAT uses its own file. Sometimes this will generate too much messages.
You can use the Log::Log4perl configuration to switch on and off messages, filter them,
redirect them. In principle you can restrict logging to certain CipUX Perl modules
or even subroutines. After the logging configuration has changed the server has to be
restarted before it takes effect.

39

10.2 cipux rpc list

This script uses the same configuration space as the XML-RPC server. Its only duty is to
list all calls and all sub-commands in a long list. Even though this a good thing to have
in this output calls and sub-commands are not distinguished. Therefore this is a very
simple method for checking what is available in terms of shell scripts. If the server gets
an introspection mechanism in the future this command should be enhanced/replaced
accordingly.

˜$ cipux_rpc_list|grep -v cipux_task

Since all sub-commands in the RPC scope task starting with cipux_task the trick
with the grep -v do the trick to list all scopes.

ping
version
sum
login
logout
session
ttl
task

10.3 cipux rcp test client

The test client can be used to test a locally installed CipUX XML-RPC server. The
usage is straight forward and self explanatory. Prepare yourself with the login of
cipadmin and the password. The test script will create and delete some test accounts.

The cipux_rcp_test_client runs several RPC calls and try to figure out if the
answers are valid or not. It can therefore used to test if the XML-RPC behaves correctly
in some ways. Because the cipux_rcp_test_client execute real tasks like creating
and deleting users and groups on the system there is the possibility to delete accounts
that should not be deleted. Even if this is not very likely it is more likely to corrupt
the LDAP database in terms of data validity and because of this risk it is advised to
uses this command after a LDAP backup and not on productive systems unless you can

40

assure that the LDAP data before running and after running is the same in terms of
validity. So keep in mind until someone volunteers to enhance it, this program is not
bullet-proof.

˜$ cipux_rcp_test_client

This will outputs hundreds of lines. The last lines might look like this ones:

Test 0305: CipUX::Task 03 create netgroup exec SUCSESS
Test 0306: CipUX::Task 04 create netgroup list SUCSESS
Test 0307: CipUX::Task 05 create netgroup result SUCSESS
Test 0308: CipUX::Task 06 add client to netgroup exec SUCSESS
Test 0309: CipUX::Task 07 add client to netgroup list SUCSESS
Test 0310: CipUX::Task 08 add member to netgroup result SUCSESS
Test 0311: CipUX::Task 09 erase client ’s of netgroup list SUCSESS
Test 0312: CipUX::Task 10 destroy netgroup exec SUCSESS
Test 0313: CipUX::Task 11 destroy netgroup list SUCSESS
Test 0314: CipUX::Task 12 destroy netgroup result SUCSESS
--

SUCSESS: 314 FAILURE: 0
--

An other test of the script is also very useful: testing if the LDAP database is more or
less the same before and after this script was executed. To perform this test you have
to be root or at least you have to have the execution rights for slapcat.

˜$ slapcat > before
˜$ cipux_rpc_test_client
˜$ slapcat > after
˜$ diff --ignore-matching-lines ’ˆmodifyTimestamp’ \

--ignore-matching-lines ’ˆentryCSN’ before after

If you have no output of the diff command the LDAP is more or less the same as
before.

10.4 cipux rpc test repetition

The cipux_rpc_test_repetition script can be called simply

41

˜$ cipux_rpc_test_repetition --time 2000

It will run for the specified time in seconds. To test the default ticket life span of 1200
seconds a value larger then 1200 for example 1800 (30 minutes) should be used. For 1
minute we get this output at the end of the job.

==
pay ticket 13e777a207fb292f3a1e3d94d8fcedc9
default channel ticket 13e777a207fb292f3a1e3d94d8fcedc9
cipux_task_list_user_accounts at 1260214026 status TRUE \
(13e777a207fb292f3a1e3d94d8fcedc9)
pay ticket 13e777a207fb292f3a1e3d94d8fcedc9
default channel ticket adf89d46c9e167b5758adbaf405110ac
explicit channel ticket adf89d46c9e167b5758adbaf405110ac
==
pay ticket adf89d46c9e167b5758adbaf405110ac
default channel ticket adf89d46c9e167b5758adbaf405110ac
cipux_task_list_user_accounts at 1260214026 status TRUE \
(adf89d46c9e167b5758adbaf405110ac)
pay ticket adf89d46c9e167b5758adbaf405110ac
default channel ticket d9f3a0acce41b72a5c4dbff23f2e8c9c
explicit channel ticket d9f3a0acce41b72a5c4dbff23f2e8c9c
Summary:
start at: 1260213967
stop at: 1260214027
seconds: 60
true : 291
false : 0

11 CAT - other CipUX XML-RPC clients

A CipUX Administration Tool (CAT) do not have to be a XML-RPC client. At the
time of this writing all of them are. One reason is that a XML-RPC clients for CipUX
to not have to have root rights to access the XML-RPC server. Some of the existing
clients are Web clients, where it is out of question running this clients with root rights.
Another reason is that CipUX XML-RPC hide most of the complexity of the storage
layer from the client and that the objects which are created are the same among all

42

clients. Because CipUX functions as an abstraction layer between the clients and the
operation system additional features can be implemented and used among all clients.

This section tries to summarize all CATs to give an overview about the current devel-
opment as well as a starting point regarding the search for further informations about
different clients. The order of this sections represented the age of the tool.

11.1 CAT-Web

The development of CAT-Web started as CAT in the year 2000 when there was a need for
a CipUX Administration Tool. The first university internal release 1.0 was a standalone
CGI program for the apache web server. For the version 2.0.0 CAT was converted to a
standard webmin module and used up to version 3.2.16 with root rights. This approach
was obsolete when webmin was expelled from Debian. The name changed from CAT ot
CAT-Web and is basically a rewrite from scratch. Some pre-releases that already uses
the XML-RPC server where made public in 2007 - 2009. The next version 3.4.0.0 will
be released ending 2009 or beginning 2010 and is a CGI application for apache (and
probably other web servers) written in object orientated Perl that supports template
driven skinning.

Home page: http://www.cipux.org (English)

11.2 CipuxPHP

CipuxPHP, is a web interface for managing users on Skolelinux. It’s a module for the
CMS Moodle, but it was also written to work in a stand-alone mode in the case of
Moodle isn’t installed.

The starting point of this software where actually before the CipUX XML-RPC server
by itself where developed.

2005: The first version was developed by Benjamin Sonntag in a real programming
session with the French Skolelinux Team in Forbach, France in July 2005.

2006: Jean-Charles Siegel took over the development in Summer 2006 at the great
summer meeting at Carreau Wendel’s Mines Museum (Petite-Rosselle, France) and

43

http://www.cipux.org

developed the second version that was able to access CipUX 3.2.6, which was deployed
at the French Add-On CD for Skolelinux.

A second big dev-camp in Extramadura’s Summer University (Spain’s area) was the
theater of an important development of CipUX.

2007: The third major version was developed by Jean-Charles Siegel and Christophe
Gossen for an university project that supports a non official release of CipUX in 2007.
It was written in PHP object, using templates to display the web pages.

2010: The forth major version development started again Jean-Charles Siegel together
with the French Skolelinux Team in 2010 for CipUX 3.4.0.x. This is still under develop-
ment.

The goal of cipuxPHP is to manage easily the pupils in Skolelinux. Create, modify,
delete them. But also manage classes (considered as groups) and move pupils from one
class to an other.

Home page: http://wiki.skolelinux.fr/CipuxXmlRpc (French)

(Jean-Charles Siegel)

11.3 CipUX-Passwd

CipUX::Passwd is a Perl module and a command line script that can be used as an
CipUX XML-RPC client to set once own password. It was developed by Christian
Külker in 2009 and released as CipUX-Passwd-3.4.0.2.

11.4 CATweasel

The project was started in early 2009 for the RLP-Skolelinux project. Main contributor is
the ed-media GmbH from Kaiserslautern Germany. Debian maintainer for CATweasel
is Jonas Smedegard. Many thanks for that Jonas! CATweasel was started because
there was a steady demand for more interactivity in the web UI for CipUX. Klaus
Knopper then decided to contract the ed-media GmbH to start a new project that

44

http://wiki.skolelinux.fr/CipuxXmlRpc

should establish a basis on a modern web framework to accomplish that. That was the
birth of CATweasel.

At the moment there is no fancy website with lots of screenshots. Just a boring Wiki
with docu and the repository on bitbucket:
http://bitbucket.org/edmedia/catweasel/wiki/Home

(Jochen Breuer)

45

http://bitbucket.org/edmedia/catweasel/wiki/Home

	Preface
	Parts of CipUX XML-RPC server
	Configuration of the server
	Communication via session
	Categories of RPC calls
	Example call and answer
	Sum call example
	Task call example

	Construction of the client call
	RPC scope
	Payload

	The server response
	Calls and responses in detail
	ping
	version
	sum
	cipux_task_sum
	login
	logout
	ttl
	session
	task
	Taxonomy
	Object call parameter
	Value call parameter
	Other call parameters
	More then one call parameter
	Exceptions
	Access to a task

	Toolbox
	cipux_rpcd
	cipux_rpc_list
	cipux_rcp_test_client
	cipux_rpc_test_repetition

	CAT - other CipUX XML-RPC clients
	CAT-Web
	CipuxPHP
	CipUX-Passwd
	CATweasel

